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MULTIPLE PURPOSE OPTIMUM ALLOCATION IN STRATIFIED SAMPLING 

H. O. Hartley, Texas University 

1. Optimum allocation in stratified sampling* 

Consider a finite population of N units 
subdivided into H strata containing Nh units 

(h = 1,2,...,H) respectively. Denote by yhithe 

y of the ith unit in the stratum h and by 
Nh 

Yh = yhi and = /Nh (1) 
=1 

the strata totals and means and by 

Y =EYh and =Y /N (2) 

the 
population total and mean. A random sample of 

units is drawn at random from the hth stratum 
d denote by 

(3) 

the sample strata totals and means correspond- 
ing to (2). The customary unbiased estimators 
of h and are respectively given by 

and = E (Nh/N) yh (Li) 

and the variance of by 

Var (y) = 01h/N)2 Sh (1 - 1 /Nh) = 
h 

(Nh 

/N)2 
Sh - Vcon 

(5) 

where the hth stratum variance, is given by 

Nh 

Sh = (Nh 1) -1 - 

i =1 

and Vcon does not depend on the nh. 

(6) 

If the cost of drawing the sample is given 
by the linear cost function 

(7) 

then the classical 'optimum allocation' is de- 
fined as that set of nh which minimizes Var (ÿ) 

for a given cost C. From classical Lagrangean 
calculus we obtain 

= C (Sh Nh / E Nh C h (8) 

resulting in a minimum variance of 

= 
C-1 N-2 Sh Nh 

Ch)2- 
Vcon (9) 

h 

The formal solution (8) will of course, only 
be of practical use if 

1 < Nh (10) 

and will, in general, be fractional. 

It will be shown in 2. that (8) does indeed 
yield an absolute minimum of (5) at constant 
cost. 

2. Multiple purpose optimum allocation 

Most sample surveys are concerned with ob- 
taining estimates of a fairly large number of 
population parameters and not just the single 
linear estimate of Y. Usually a large number 
of variables is measured for each sampled unit 
and not only is it required to estimate the 
population means for each of these but if the 
data are used in 'analytic studies' it may be 
of interest to estimate differences between all 
or some of the strata means for some or all of 
the variables but also for other subsections 
of the population called 'domains of study.' 
We propose to consider therefore a number of J 
different estimators j which are linear 
functions of some or all of the strata means 

and may involve these means for one or several 
of the variables. The variance of such linear 
estimators will be of the form 

Var j) ah (l - 1 /Nh) 
h 

1 Vj (11) 

where V does not depend on nh. We retain the 

linear cost function (7) and consider three 
possible definitions of optimizations 
(A)* Minimize a weighted sum of the J variances 

E W. Var E w a 

j=1 h j=1 

- Wj 

-V (12) 

at constant cost C. 

*See e.g. Cochran, W. C. (1962) *See Yates, F. (1953) and Cochran, W. G. (1962) 



(B) Prescribe values va for the variances in 

the form 

H 
-1 

and minimize the cost C given by (7) subject to 
(13). 

= 1,2,...,J (13) 

(C)xXSet tolerances for all variances in the 
form 

1 
E 

h=1 

and minimize the cost (7) subject to the in- 
equality restrictions (14). At first sight it 
may be argued that (B) is not necessary in view 
of (C) since one would surely not wish to force 
the variances to attain the upper tolerance 

if it is possible to achieve smaller variances 

at the same cost. However, the utility of (B) 
lies in using its solution for variable 
under certain circumstances. 

3. The solution to problem (A) 

The solution to (A) is, of course, equiv- 
alent to a single. purpose optimization with 
the minimum weighted variance (12) attained for 

where 

= / 

Ah 

and given by 

V C1 2 (A. C 
h 

In the special case of 

W = for j j' 

The problem reduces to the single purpose 
minimization of Var (ÿj') and (15) 
becomes 
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We now show that (19) is an absolute 

minimum for Var (ÿj): 

Consider an allocation satisfying the given 

cost condition 

C = E Ch (20) 

h 

then we have to show that the variance of 

computed from (11) and using the sample sizes 
nh will exceed Vmn (j). Using (11), (19) and 

(20) we obtain 

C(Var(ÿ.) - (j))= 

=(h Ch %) (h 

= (21) 

where Av is the weighted average. 

Av = E /Ch)2nh1 /E Chnh (22) 

Formula (21) shows that the minimum variance is 
attained if and only if the satisfy (13) and 

will in general provide the amount by which 

(15) 
Var (ya) exceeds min( 

4. The solution to problem B 

The J linear equations (13) for the H 
variable nh can, of course, only be satisfied 

if H -J of the equations are linearly dependent 
upon H of them and even then the solutions may 
not yield positive We shall therefore 

(16) confine our discussion of this problem to such 
specifications of vi which are 'of interest' 

that is to situations in which the system (13) 

has at least a one parametric infinite set of 
solutions. A necessary condition for a minimum 
of the cost C under the restrictions (13) is 
given by (15) where the weights are now to be 

interpreted as Lagrangean multipliers and must 
be determined by substituting (15) into (13). 
It is easy to show by reference to the 2nd order 
differentials that (15) is also a sufficient 
condition for the to yield an absolute 

minimum of the cost C provided the W are deter- 

mined to satisfy (13). In practice, however, 
one would not proceed in this manner but rather 
start from the Lagrangean weights and go 

through the following steps: 

(j') = / 

leading to the minimum 

(j) = C 
-1 

(E (a. (19) 

*-See Dalenius, T. (1957) Yates, F. (1953) and 
Cochran, W. G. (1962) 
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(i) Choose weights W. representing the relative 

importance of the variances ) and fix 

a budget C for the survey. Solve problems 
(A) yielding the optimum allocation 

given by (15). 

(ii) By substituting the nt in (15) compute 

individual variances v. - V. for the 
J J 

estimators y.. Since the are now also 

the solutions to problem (B) it can be 
stated that at least these variances 

- V. can not be achieved at a smaller 
J J 

cost than the budget C. 

(iii) Compare the v. - V. with the Vmin(j) for 

the same budget given by,.(19) and increase 
the weights W. for such where the excess 

is 'disappointingly large.' 

(iv) If the adjustment in (iii) does not lead 
to a satisfactory set of and if a con- 

stant percentage decrease in the is 

desired the corresponding percentage in- 
crease in the budget C will achieve this. 

There are obvious limitations to the form- 
ulation and solution of the multiple purpose 
optimization problem in the form (A) and (B), 
and we may summarize them as follows: 

The main reservation about minimizing a 
weighted variance (as in (A)) puts the onus on 
the choice of weights W. which may result in 

unreasonably high variances of some of the 
Var(g.) in the weighted sum. The approach in 

(B) however, does much to rectify, this 
disadvantage: It not onlyashows that at least 
the actually attained have been met with 

minimum cost, but it also gives a feed -back for 
the improvement of the choice of weights. There 
remain, however, two main disadvantages. First, 
the procedure described above will in general 
require that i.e. that the number of 
estimators entering into the optimization does 
not exceed the number of strata, and moreover 
should be moderate or small for convenience 
in the adjustment of the W. Secondly, the 

solution n may well exceed Nhand we have so 

far not discussed what to do in such situations. 
All these problems can be resolved if we adopt 
the formulation (C) and solve it by non -linear 
programming. 

5. The solution of problem C by non- linear 
programming 

In finding the minimum cost C under the 
inequality restrictions (14) we find it con- 

venient to introduce the reciprocals 

rh = h = 1,...,H (23) 

as the elements of our activity vector r which 

results in a convex activity space with the 
linear boundaries defined by 

Ar < v - V (24) 

and the upper 'bounds' 

0 <rh -1/Nh (25) 

where A is the H x J matrix of the a, and 

v - V the J- vector with elements v. - V. that 

is the set of tolerances for the variances 
Var(ÿj). 

No assumptions need be made concerning the 
rank of A or the magnitude of H and J except 
within the framework of available computer 
codes. The 'objective function,' i.e. the 

cost now becomes the convex function 

C Ch(rh + )-1 (26) 

and is of a form described as 'separable' see 

Charnes and Lemke (1954) and Hartley (1960). 

This fact would make available the procedure 

by Hartley (1960) which would involve an 
1 

approximation to the hyperbolae (rh -1 by a 

moderate number of linear line segments which 

method has been shown to reduce the problem 
to linear programming. Alternatively the 

method recently published by Hartley and Hock- 
ing (1963) could be used which does not require 

polygonal approximations. For the details of 

the algorithm we must refer to this paper. We 
confine ourselves here to stating that a new 

variable is introduced in the form 

1 

+ 1 -C = -E 
Ch (rh + -1 (27) 

and that rH 
+l 

is maximized whilst (27) occurs 

as a (non -linear) restriction. The problem 

is solved in the dual form which leads to 

the following tableau. 



Tableau I. Dual tableau for non- linear 
programming problem 

h=0 

h=1 

h=H 

h=H+1 1 

h= 
=0 1,...J 1,...h =H H+1 

h= 
11+2 

0 (1-1/Nh) M 

0 

-1 

-1 

-1 

0 

. 

1 

. 
+N ) 

h 
r 
h h 

0...0 . . . 0 1 1 

Tableau I will be recognized as the dual tableau 
in standard form, for maximizing subject 

to the restrictions Ar < v -V and (1 -1 /Nh) 

except that the line h =0 represents the negative 
of the dual objective function and that the last 
two columns require some explanation: The 
column h=H +1 is an 'artificial vector' to 
supplement the (H +l) x (H +1) identity matrix of 
slack vectors (not shown in Tableau I) for an 
initial "basis." Its 'penalty' M will eventual- 
ly drive it out of the basis. The last column 
represents the non -linear restriction (27) and 
is non - standard. Whilst for an explanation of 
this column we must refer to Hartley and 
Hocking (1963) we should state here that its 
first element is given by 

1 1 
+= -E ch(rh -E ch(rh - 

rh 
(28) 

and that it is evaluated for varying argument 
vectors rh in the course of the simplex process 

and may contribute several columns for the 
current basis matrix. 

It will be noted that the problem leads to 
a dual Tableau of size (H +2) x (J +H +3) which is 
quite a feasible size for a high -speed computer 
even if H is of the order 50 and J of the order 
200. Three small numerical examples are given 
in Hartley and Hocking (1963). 

It must of course be remembered' that the 
algorithm of the non -linear programming 
technique only yields a numerical optimum 
allocation (in the scales) for the par- 

ticular problem and no general formula for the 
nt. It may therefore rightly be asked whether 

there are techniques available which exhibit 
numerically the effect on the of altering the 
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specified variance tolerances v. - V. There 

is indeed such a technique available which is 
known under the name of 'parametric programming' 
and which is incorporated in most computer codes. 
Another question which may be asked concerns 
the uncertainty in the which depend on the 

strata variances. Since the strata variances 

would normally not be known but estimated 

one may wish to regard the as stochastic 

variables. Such a model would lead to methods 
of stochastic programming. Here we are certain- 
ly more restricted with regard to the avail- 
ability of methods and computer codes. 

More recently we have obtained some new 
results on convex parametric programming using 
a modification of Hartley and Hocking (1963) 
which will be published shortly. With these 
methods it will be possible to examine how an 
alteration of the variance tolerances v. - Vj 

effects the optimum allocation and the 
cost C. 
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